A point mutation in the sensor histidine kinase SaeS of Staphylococcus aureus strain Newman alters the response to biocide exposure.

نویسندگان

  • Daniel Schäfer
  • Thiên-Trí Lâm
  • Tobias Geiger
  • Markus Mainiero
  • Susanne Engelmann
  • Muzaffar Hussain
  • Armin Bosserhoff
  • Matthias Frosch
  • Markus Bischoff
  • Christiane Wolz
  • Joachim Reidl
  • Bhanu Sinha
چکیده

Staphylococcus aureus reacts to changing environmental conditions such as heat, pH, and chemicals through global regulators such as the sae (S. aureus exoprotein expression) two-component signaling system. Subinhibitory concentrations of some antibiotics were shown to increase virulence factor expression. Here, we investigated the S. aureus stress response to sublethal concentrations of a commonly used biocide (Perform), by real-time quantitative PCR (qRT-PCR), promoter activity assay, sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis, and a flow cytometric invasion assay. Perform, acting through the production of reactive oxygen species, generally downregulated expression of extracellular proteins in strains 6850, COL, ISP479C but upregulated these proteins in strain Newman. Upregulated proteins were sae dependent. The Perform component SDS, but not paraquat (another oxygen donor), mimicked the biocide effect. Eap (extracellular adherence protein) was most prominently augmented. Upregulation of eap and sae was confirmed by qRT-PCR. Promoter activity of sae P1 was increased by Perform and SDS. Both substances enhanced cellular invasiveness, by 2.5-fold and 3.2-fold, respectively. Increased invasiveness was dependent on Eap and the sae system, whereas agr, sarA, sigB, and fibronectin-binding proteins had no major effect in strain Newman. This unique response pattern was due to a point mutation in SaeS (the sensor histidine kinase), as demonstrated by allele swapping. Newman saePQRS(ISP479C) behaved like ISP479C, whereas saePQRS(Newman) rendered ISP479C equally responsive as Newman. Taken together, the findings indicate that a point mutation in SaeS of strain Newman was responsible for increased expression of Eap upon exposure to sublethal Perform and SDS concentrations, leading to increased Eap-dependent cellular invasiveness. This may be important for understanding the regulation of virulence in S. aureus.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SaeRS-Dependent Inhibition of Biofilm Formation in Staphylococcus aureus Newman

The SaeRS two-component regulatory system of Staphylococcus aureus is known to affect the expression of many genes. The SaeS protein is the histidine kinase responsible for phosphorylation of the response regulator SaeR. In S. aureus Newman, the sae system is constitutively expressed due to a point mutation in saeS, relative to other S. aureus strains, which results in substitution of proline f...

متن کامل

The virulence regulator Sae of Staphylococcus aureus: promoter activities and response to phagocytosis-related signals.

The two-component system SaeRS of Staphylococcus aureus is closely involved in the regulation of major virulence factors. However, little is known about the signals leading to saeRS activation. A total of four overlapping transcripts (T1 to T4) from three different transcription starting points are expressed in the sae operon. We used a beta-galactosidase reporter assay to characterize the puta...

متن کامل

SDS Interferes with SaeS Signaling of Staphylococcus aureus Independently of SaePQ

The Staphylococcus aureus regulatory saePQRS system controls the expression of numerous virulence factors, including extracellular adherence protein (Eap), which amongst others facilitates invasion of host cells. The saePQRS operon codes for 4 proteins: the histidine kinase SaeS, the response regulator SaeR, the lipoprotein SaeP and the transmembrane protein SaeQ. S. aureus strain Newman has a ...

متن کامل

Repair of global regulators in Staphylococcus aureus 8325 and comparative analysis with other clinical isolates.

The pathogenicity of Staphylococcus aureus strains varies tremendously (as seen with animals). It is largely dependent on global regulators, which control the production of toxins, virulence, and fitness factors. Despite the vast knowledge of staphylococcal molecular genetics, there is still widespread dispute over what factors must come together to make a strain highly virulent. S. aureus NCTC...

متن کامل

The Extracytoplasmic Linker Peptide of the Sensor Protein SaeS Tunes the Kinase Activity Required for Staphylococcal Virulence in Response to Host Signals

Bacterial pathogens often employ two-component systems (TCSs), typically consisting of a sensor kinase and a response regulator, to control expression of a set of virulence genes in response to changing host environments. In Staphylococcus aureus, the SaeRS TCS is essential for in vivo survival of the bacterium. The intramembrane-sensing histidine kinase SaeS contains, along with a C-terminal k...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 191 23  شماره 

صفحات  -

تاریخ انتشار 2009